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As is known [1], the system of equations describing two-phase motion of liquids with different physicochemical
characteristics in a porous medium is rather complex and can be integrated only by numerical methods. Thisis a
result both of the complexity of the system and of the fact that the functional dependences of the relative phase
permeabilities and capillary pressure on the saturation which appear in these equations are often given in the form
of experimental curves.

Assumptions of various sorts are used in order to obtain analytic solutions of the two phase-motion problem.
Here we assume that the real porous medium specimen can be replaced by a system of parallel capillaries [2], whose
radii r in unit cross section of the specimen are distributed in accordance with the log-normal law with density

f (r) = no 0xp {—- lnz?:,é 2 } ) (1)

where ny, ry, 0 are parameters. Several experimental investigations support the introduction of such a distribution
(see, for example [31). It is natural to select the constants ng, ry, and ¢ 5o that the basic filtration characteristics of
the real medium and the model coincide.

We first examine the motion of a homogeneous liquid with viscoesity u under the influence of the pressure
gradient dp/dx = Ap/l = const. Here Ap is the pressure difference across the ends of the speciment of length I; x is the
coordinate axis along the specimen, which is positioned horizontally.

The number dN of capillaries whose radii lie in the interval (r, r + dr) is dN = f(r)dr, so that the total number of
capillaries per unit section will be

N= iof (r) dr == V 2nngros exp {%?—} (2)
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The dimension of the number N is em™% I is cbvious that the minimum r, and maximuam r* radii of the
capillary are found from the relations
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The effective porosity m of the model specimen is written as
m= ng r2f (r) dr = "Nr? exp {45%. (3)
o
From the Hagen-Poiseuille formula we have the flow rate q through a capillary of radius r that

_ @ridp
== S dxr’

Consequently the total flow rate Q through a unit section of the model! is
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Comparing this with the Darcy law for the real porous medium with permeability k

we obtain
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From (3) and (4) we find

1 1 mrg?
Gzz—gln-a‘ (a_—. % ) (5)

To obtain the third relation connecting the parameters of the function f{(r), we can require that one of the
important characteristics of the two-phase motion process — the residual water saturation s; — be the same for the
real medium and the model.

It is known [2] that in the case of oil injection into a specimen previously completely saturated with water the
water displacement begins only for pressures above some definite minimum "displacement pressure™ Ap, and that
there always remains the so-called residual water saturation, which is practically independent of the magnitude of the
pressure differential created across the end of the specimen. This phenomenon is explained by the hydrophilic nature
of the medium. In accordance with the Laplace formula, the capillary pressure preventing oil penetration in
capillaries of radius r will be

Ppe = ¢/ r (¢ = 20y cos 0) (6)

Here oy, is the interphase tension force at the water-oil boundary and 0 is the contact wetting angle.

As a result of the hydrophilic nature of the medium, a water film remains on the walls of the pores {(capillaries).
We henceforth assume that the film thickness 6 is constant and independent of the capillary radius and that

Ap >e/r*¥ = Ap,.
Let 14, i, be the oil and water viscosities, respectively.
Using the formula obtained by Kotyakhov [4], we find the distance x(r,t) traveled by the water-oil contact

surface from the point x = 0 during the time t in the capillary of radius r (Fig. 1, where 1 is the oil region, 2 is the
water region):

s =" V(}»zl)ﬂ—tAuALAp—m —8P/4 )
(Ap = pg — p)
We see from (7) that x(r,t) is an ascending function of the variable r and, consequently, the oil will fill
primarily the capillaries with large radii. The leading edge of the water-oil contact surface propagation in the model

speciment is obviously

z* (t) = = (r¥, o).
The first oil portions travel through the specimen in the time t,, given by the formula

At 8)
*T(Ap—Apy) (X —8)2”
Let us examine the specimen section x = x(r,t), given by (7) and located between the points with the abscissas:
x =x, (t) and x =x* (t).
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At the time t all the capillaries at this section whose radii are greater than r will be filled with oil; the
capillaries with smaller radii will be saturated with water. Thus, the oil saturation s at this section is defined in the
form

154



s(r) =—r1n.S wu(r—8)2f (r)dr. (9)

Taking (9) into account, we determine the magnitude of the residual water saturation sy, which is dependent of the
pressure differential (in view of the adopted assumption that the thickness of the water film wetting the capillary walls
is constant), in the form

o= 1 — s (8). (10)

Thus, if the porosity, permeability, and residual water saturation of the real medium are given, then (3}, (4)
and (10) can be used to construct a capillary model having the same characteristics as the real medium, and the
process of water displacement by oil is described by simple analytic expressions.

Excluding from (9) and (7) the parameter r, which, generally speaking, runs through the half-interval [§, »], we
find the oil saturation profiles at any time t, i.e., a relation of the form s = s(x,t).

Assuming that filtration through the specimen can take place for any given pressure gradlents Apj, just as under
natural conditions of the oil stratum disposition, and using a formula of the form (6) for r = ¢/Apj we can find the
time for displacement of the free water from the specimen from (8).

To find the oil phase permeability k? we use the so-called weighted average permeability for the nonwetting phase
[5,6]

B —s (%) S (r— 8y} (r)dr (Q 1Y (7 dr>“1. (i1
[}

We obtain similarly the wetting phase (water, Kj) permeability

*

ko = [ — 5 (r¥)] ( r4 dr +§O [rd — (r — 83} f dr) (<§) raj dr)‘l_ (12)
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For a pressure differential Ap = const, displacement of water by oil will take place in all capillaries whose radii
r are larger than r¥ stationary water will be present in the other capillaries. In this case the oil will travel
selectively along the capillaries of largest radius, forming a water-oil contact front which varies with time t and
approaches the opposite end of the model specimen. At the time t; the opposite end is reached by the front point of the
water-oil contact front surface corresponding to the maximum capillary radius r™3% then at the time t, the opposite
end is reached by the lagging point of the water-oil contact front surface corresponding to the minimum radinsg rmin of
the capillary through which oil can still travel for the Ap assumed; the times t; and t, are found from (8) for r* = rmax
and r* = rMin_ pegpectively.
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In the course of the time (t;, t;) the oil flow rate through the opposite end of the specimen will be variable.
Kotyakhov [4] obtained the formula for the flow rate of liquids through capillaries
w{r—8*(Ap—p,)
8V {wlP— ¢ — 8¢ dp (Ap—p)i/%

b(r, t) = (13)

Substituting into (13) expression (8) for t with r*< [»™® /2%  we obtain the flow rate b;{r*) through the
capillaries at the opposite end of the specimen. Forming the product by{r)f Ar and summing in the limits from r™in ¢o
rMaX  (where r™aX ~ ), we obtain the formula for the oil discharge during the time interval {t;, t,):
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Q= S by (r)f dr.
min
However, if we take r* = r™in ag 3 function of the time t from (8), we obtain the oil discharge through the
opposite end of the specimen in the half-interval [t;, t], where t; corresponds to r™aX ~ «;

%
co=—{b@mimima
13
(dr (x) = J (1)dv).

Here 7 is the variable of integration.
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Generally speaking, at the opposite end of the specimen both the residual water saturation and the permeability

will be variable in the interval (t;, t;).
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In the case of oil flow along the capillaries (e r™®, m3x]  we can find how the oil saturation varies at the

sections of the water-oil contact front for t =t;:

(2, )= ;G (r— 83 dr (§°rzf ar).
0

r(x, &)
In the unsteady filtration regime, when the pressure differential is a function of time, i.e., Ap = Ap(t}, the

filtration characteristics s and k° will also be functions of time.
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Knowing, for example experimentally or theoretically, how the porosity and permeability of rock specimens vary
as a function of the effective rock pressure and temperature, and also having one other value (for example, the
variation of ry, the parameter f(r) as a function of the effective rock pressure and temperature), — we can express the
parameters of the distribution f(r) in terms of the effective rock pressure and temperature, and using these
parameters for the model specimen described above we can find s, and k" as a function of the effective rock pressure

and temperature.

Figures 2,3, and 4 show curves of the capillary pressure, oil saturation profiles, and phase permeabilities,
respectively, calculated using (6), (7), (9), (11), (12) for k;, = 0.4065 darcy, my = 0.182, ry =3- 107% em, ¢ = 0.3,
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2=0.5,6=02-10"cem, g, =0.01 cp, 4, =0.11 cp, I =10 cm, Ap = 5075 - 10* dynes/cm’ for t = 10, 10%, 10 sec.

Figure 5 presents the relation s, = sy (p;), where p; is the effective rock pressure. Analysis of core material at
the lithology laboratory of the Siberian Scientific Research Institute of Geology, Geophysics, and Mineral Raw
Materials has shown that the following empirical relations hold:

210 18
. A 2 .- SR 2
k= g3 1078 em?  ro= g P1104cm,

m = [(1/mo— 1) exp (0.045p)-740) 1 1},
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